The Input-Output technique developed by the American General Electric Company can be helpful. Although it need not be, its use has been restricted mainly to technical problems in which the input is energy, light, heat, electricity, etc. - with a desired output in some way dependent upon it. Whiting gives, for example, the problem of devising a fire warning system. The input is fire and the required output a warning that fire is present, with a number of constraints in between: the warning must be foolproof and continuously available; it must be quick-acting to minimize damage; and it must be discernible at points remote from the fire. The problem may not be solved in one step. A warning system requires several intermediate steps, starting with the fire itself and ending with some physical warning system. Whiting warns against trying to short-circuit any intermediate point – this is more likely to lead to a stereotyped solution, since it fails to consider the opportunities for branching into the alternative paths offered by multiple outputs generated at some stages.
The Input-Output principle forms much of what might be considered the heart of a ‘Systems’ approach. This removes the limitations of a problem defined in purely technical terms and extends the definition of input, output and constraints to include the whole situation – men, money, materials, machines and methods. It thereby provides an overall view and allows us to arrive at a more comprehensive, unified and long-lasting solution than any piecemeal approach can make possible.
Thus, in applying a system approach, say, to a problem involving the manufacture of a chemical, we would not be limited to the technicalities of the process, choice of materials of construction, design and performance of mechanical and electrical equipment and methods of measurement and control. We should, in addition, be involved with the problems of processing and handling raw materials, methods of transport, and use and disposal of finished products; with the recruitment, training and working conditions of the management and men needed to run the plant; with the effects of the product and its manufacture on the local environment – the noise, smell, smoke and general pollution produced; with the long-term effects of our presence as an employer and a source of opportunity. Even then the list is far from complete, but we are beginning to paint a fuller picture of the total situation and thereby identify more of the important variables having claim to consideration alongside those of technology.
Clearly, the more complex a problem and the greater its potential impact on people, the more appropriate a systems approach becomes. But it would surely be wise to consider all but the most narrowly defined technical problem in a context which includes the human element, if we wish to avoid unpleasant reactions and resistance to our solutions when we create them.
Jenkins suggests that there are four main stages in the systems approach: analysis, synthesis, implementation and operation.