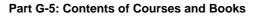
Part G-5: Contents of Courses and Books

Contents of National and International Courses and Books


A. Contents of National and International Courses

University or web site	Course title	Course number	Lecturers	Content
Auburn university	Heat transfer in electronic equipment	ME5348	A.D. Kraus and A. Bar-Cohen	Introduction to Thermal/Fluid Issues in Electronics Manufacturing and Assembly Conduction in Printed Circuit Boards and Chip Packages Natural Convection Cooling of Electronic Systems Forced Convection from Printed Circuit Boards Design & Optimization of Single Fins Heat Sinks Introduction to Boiling and Condensation Passive Immersion Cooling Compact Models of Chip Packages and Heat Sinks Failures and Reliability Strain, Stress, and Fatigue Thermoelectric Cooling Heat Pipes

Introduction: importance of heat transfer www.engr.sjsu.edu/ckomives/Courses/Heat%2 Basic of heat transfer Transfer%20in%20Electronics/index.htm Heat transfer mechanism General 1-D conduction Heat transfer in electronics General 3-D conduction Dr. Claire F. Komives Heat generation and variable thermal conductivity & Solution of conduction problems CHE/ME 109 Steady state 1-D conduction Heat transfer from finned surfaces Transient conduction - lumped system analysis 1-D Transient conduction Introduction to forced convection Natural convection over surfaces Natural convection from finned surfaces and PCB's Combined natural and forced convection Thermal radiation Communications/Information industry overview The State University of New Jersey-Science and Engineering Convergence of telephone, computer, entertainment Communications networks and technologies Traditional telephone, voice & data, LANs, WANs, Internet, IP Mechanical engineering aspects of electronic cooling OSI layers, the physical layer and opto-electronic packaging hierarchy Semiconductors and integrated circuits Integrated circuit packaging Printed circuit boards, backplanes, cabinets, connectors, Dr. L. S. saxena cables 14: 650: 478 Optical and electronic components **Electronic** materials Thermal management Thermal design & analysis, free and forced air-cooling etc. Electrical design considerations Parasitics, EMC/EMI etc. Product development and manufacturing Reliability, qualification, environmental stress testing Resource Center Failure modes, shock & vibration, thermo-mechanical stresses, corrosion etc. Quality standards, ISO 9000 Industrial ecology and design for environment, ISO 14000

University of Oslo	Electronic components, packaging and product	ISBN 82-992193-2-9	Leif Halbo and Per Ohlckers	Introduction to electronic products and electronic packaging Technologies for electronics-overview Materials and basic processes Components for electronic systems Printed wiring board PCB design Production of PCB Hybrid technology and multi ship modules Micro structure technology and micro machined devices
Portland State University	Heat Sinks for Electronic Cooling Applications	ME 449/549	Gerald Recktenwald Associate Professor, Mechanical Engineering Department	What is a Heat Sink? Types of Heat Sinks Simple Model of a Component with a Heat Sink Review of Fin Theory Characterization Experiments: measuring thermal resistance Empirical Data on Heat Sinks

		100000	
Univ. of Minnesota & Innovative Research, Inc.	System-Level Thermal Design for Electronics Cooling	Dr. Suhas Patankar	Importance of thermal design. Board-level and system-level design. Available software tools for board-level analysis. Computational Fluid Dynamics (CFD). Software tools for CFD. Mass and momentum conservation. Pressure drop and flow resistance. Fan curves. Heat transfer coefficients. Representation of cooling systems as flow networks. Flow resistances for common components.
Cairo University I	Thermal Design of Electronic Packaging	Dr. Kamal-Eldien Hassan	Introduction Review of basic principles Packaging of electronic systems Analogy between electric and thermal circuits Thermal networks Thermal contact resistance Heat exchangers Forced air cooling Design for transient conduction

B. Contents International References

Book Title	Authors	Publisher	Contents
Cooling techniques for electronic equipment	Dave S. Steinberg	1991by John Wiley & Sons	 Evaluating the cooling requirements Designing the electronic chassis Conduction cooling for chassis and circuit boards Mounting and cooling techniques for electronic components Practical guides for natural convection and radiation cooling Forced air cooling for electronics Thermal stresses in lead wires, solder joints, and plated through holes Predicting the fatigue life in thermal cycling and vibration environments Transient cooling for electronic systems Effective cooling for large racks and cabinets Finite element methods for mathematical modeling Environmental stress screening techniques
Electronic packaging and interconnection hand book	Charles A. Harper	1997 by McGraw-Hill	Materials for electronic packaging Thermal management Connector and interconnection technology Wiring and cabling for electronic packaging Solder technologies for electronic packaging Packaging and interconnection of integrated circuits The hybrid microelectronics technology Rigid and flexible printed wiring boards Surface mount technology Advanced electronic packaging Packaging of high speed and microwave electronic systems Packaging of high voltage systems

			Part G-5: Contents of Courses and Books
Design and packaging of electronic equipment	Joel L. Sloan	1985 by Van Nostrand Reinhold Company	Factors influence equipment design Cooling techniques Mechanics of conduction Mechanics of convection and radiation Thermal elastic effects Force systems in electronic equipment Displacement and stresses in equipment Dynamic characteristics of electronic equipment
Heat transfer	J. P. Holman	1997 by McGraw-Hill	Introduction to heat transfer Steady state conduction-one dimension Steady state conduction-multiple dimension Unsteady state conduction Principles of convection Empirical and practical relation for forced convection heat transfer Natural convection systems Radiation heat transfer Condensation and boiling heat transfer Heat exchangers Mass transfer

1.000

Introduction to heat transfer	Frank P. Incropera, and David P. Dewitt	2002 by John Wiley & Sons	Introduction to heat transfer Introduction to conduction One dimensional, steady state conduction Two dimensional, steady state conduction Transient conduction Introduction to convection External flow Internal flow Free convection Boiling and condensation Heat exchangers Radiation
Heat transfer text book	John H. Lienhard IV and John H. Lienhard V	2001 by John H. Lienhard IV and John H. Lienhard V	Introduction to heat transfer Analysis of heat conduction Convective heat transfer Heat exchanger design Thermal radiation heat transfer Mass transfer

Mechanical Engineering Hand book	Ed. Frank Kreith	1999 by Boca Raton	Engineering thermodynamics Fluid mechanics Heat and mass transfer Electrical engineering Electronic packaging
Thermal Management of Microelectronic Equipment	L-T Yeh and R. C. Chu	American Society Of Mechanical engineering 2003	Heat transfer modes thermal interface resistances printed circuit boards air cooling and fans heat exchangers thermoelectric coolers

C. Contents of Books Available in FECU Library

1. Sung Jin Kim and Sang Woo Lee, "Air cooling Technology for Electronic Equipment", CRC press, London, 1996.

Contents:

- Geometric Optimization of Cooling Techniques
- Entrance Design Correlations for Circuit Boards in Forced-Air Cooling
- Forced Air Cooling of Low-Profile Package Arrays
- Conjugate Heat Transfer in Forced Air Cooling of Electronic Components
- Enhancement Air Cooling of Electronic Equipment
- Limits of Air Cooling A Methodical Approach

2. Jerry E. Sergent Al Krum, "Thermal Management for Electronic Assembues", Mcgraw-Hill London, 1998.

Contents:

- Introduction
- Thermal Effects on Electronic Circuits
- Thermal Properties of Electronic Material
- Heat Generation in Electronic Circuits
- Basic Thermal Analysis
- Computer-Based Thermal Analysis
- Thermal Management
- Electronic Device Cooling

3. Frank P. Incropera, "Liquid Cooling of Electronic Devices by Single-Phase Convection", John Wiley& sons, inc, 1999.

Contents:

- Introduction
- Fundamentals of Heat Transfer and fluid Flow
- Natural Convection
- Channel Flows
- Jet Impingement Cooling
- Heat Transfer Enhancement

4. Roger vizi, "Forced Hot Air Furnaces, Troubleshooting and Repair", mcgraw-Hill, London, 1999.

Contents:

- Introduction
- Listing and Observing
- Components of a Gas Forced Air Heating System
- Electric Circuits
- Operation of a Gas Forced Air Heating System
- Tuning up a Gas Forced Air Heating System
- Troubleshooting a Gas Forced Air Heating System
- Introduction to Humidifiers
- Installation and Maintenance of Humidifiers
- Is an Electronic Air Cleaner Right For You?
- Installation and maintenance of Electronic Air Cleaners
- Introduction to Oil Forced Air Heating Systems
- Electric Circuits for Oil Forced Air Heating Systems
- Protecting Oil Tanks in the Winter
- Operation of an Oil Forced Air Heating Systems
- Tuning Up an Oil Forced Air Heating Systems
- Troubleshooting an Oil Forced Air Heating Systems
- Is Electric Forced Air Heat Right For You?
- Controls for an Electronic Forced Air Heating System
- Circuits for an Electronic Forced Air Heating System
- Operation and Maintenance Electronic Forced Air Heating System
- Troubleshooting Electronic Forced Air Heating System
- Is a Heat Pump Right for You?
- How Does a Heat Pump Work?
- Introduction to Heat Pumps
- Operation and Maintenance of Heat Pumps
- Troubleshooting Heat Pumps

