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4. Conduction Heat Transfer 
 
 

4.1 Fourier Equation for Conduction 
 
Conduction is one of the heat transfer modes. Concerning thermal design of electronic packages 
conduction is a very important factor in electronics cooling specially conduction in PCB’s and chip 
packages. The basic law governing the heat transfer by conduction is Fourier’s law (Equation 4.1). 

                                                 
dx
dTkq −=′′                                                            (4.1) 

 
The above equation is called the rate equation it calculates the heat transferred per unit area in the 
direction perpendicular to the area through which it’s transferred. 
 
 
4.2 General Governing Equation (Energy Equation) 
 
As a system, energy balance may be applied on any electronic component. A typical energy balance 
on a control volume can be described as in Equation 4.2. The amount of energy flowing into or out of 
the system can be described by the Fourier’s law. 
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4.2.1 Cartesian Coordinates 
A differential control volume is shown in Figure 4.1. The differential control volume has the side's dx, 
dy, dz respectively. 

 
Figure 4.1 Differential control volume , dx dy dz, for conduction in cartesian coordinates. 
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From Fourier’s law the heat flux (per unit volume) flowing into the control volume in the three 
Cartesian coordinates is  
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Using Taylor expansion series and neglecting higher order terms, the surface flux for x, y and z after a 
displacement dx, dy and dz respectively could be expressed as  
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In the above equations the rate of heat transferred at location x + dx equals that at location x in 
addition to the change of this rate with respect to x multiplied by the distance dx. 
 
If there is a thermal energy generated by an energy source through the medium .This term is expressed 
as 
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Where, 
•
///q is the rate at which energy is generated per unit volume of the medium in W/m3.  

 
If the material shows no change in phase, we may ignore the effects of latent energy, and the energy 
storage term may be expressed as 
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Where, ρCpdT/dt is the time rate of change of the sensible internal energy of the medium per unit 
volume. 
 
Substituting from Equations 4.3, 4.5 and 4.6 in Equation 4.2 yields 
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Substituting from Equations 4.4, it follows that 
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Using Fourier's law, we obtain the conduction rates 
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Substituting Equations 4.9   into Equation 4.8 and dividing by the dimensions of the control volume (dx 
dy dz), we obtain 
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For a constant thermal conductivity the heat equation could be rewritten as 
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Where α = k/ ρ Cp is the thermal diffusivity.  
 
4.2.2 Cylindrical Coordinates 
Similarly we can deduce the general heat equation in the cylindrical and spherical coordinates. The 
general equation in the cylindrical coordinates and the infinitesimal control volume on which the 
energy conservation is done is shown in Figure 4.2  
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Figure 4.2  Differential control volume dr.rdф.dx for conduction analysis in cylinderical 
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coordinates (r, ф ,z) 
 
4.2.3 Spherical Coordinates 
For the spherical coordinates also the general form and the volume on which the energy conservation 
is done is shown in Figure 4.3 
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Figure 4.3 Differential control volume , dr.r sin θ dф .r dθ , for conduction analysis in 

spherical coordinates ( r,ф,θ) 
 
 
The above equations represent the general form of heat equations; these are Partial differential 
equation (PDE). As the heat equations are second order in the spatial coordinates, two boundary 
conditions must be expressed for each coordinate in order to describe the system. But since the equa-
tion is first order in time, only one condition, termed the initial condition, must be specified. 
 
 
4.3 Special Cases of one Dimensional Conduction 
 
In order to reach solutions for the conduction heat transfer equation in engineering applications, some 
assumptions may be made. These assumptions and approximations give reasonable results and 
accuracy for many engineering applications. 
 
One of the mostly used approximations of the general heat equation is the one dimensional steady 
state heat transfer by conduction. As this section considers one dimensional heat flow therefore a 
single coordinate is needed to describe the temperature gradient and heat flow which are exclusively 
in that direction and if the temperature at any point is independent of time this system is to be 
considered one dimensional steady state heat transfer. 
 
4.3.1 Boundary Conditions 
Some of the boundary conditions usually met in heat transfer problems for one dimensional system 
are described below. These conditions are set at the surface x = 0, assuming transfer process in the 
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positive direction of x- axis with temperature distribution which may be time dependent, designated as 
T(x, t).  
 
Constant Surface Temperature 
The surface is maintained at a fixed temperature Ts. It is commonly called a Dirichlet condition, 
which is the boundary condition of the first case. It can be approximated as a surface in contact with a 
solid or a liquid in a changing phase state (boiling, evaporating, melting or freezing) therefore the 
temperature is constant. 
 

sTtT =),0(  

 
 
 
Constant Surface Heat Flux 
In this case fixed or constant heat flux q" at the surface is described. At which the heat flux is a 
function of the temperature gradient at the surface by Fourier's law (Equation 4.1) that was stated 
before. This type of boundary condition is called Neumann condition. Examples of constant surface 
heat flux are described below. 
 
a) Finite heat flux 
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This type of boundary conditions may exist, for example, in the case of an electric heater attached to a 
surface. 
 
b) Adiabatic heat flux  
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An example of the adiabatic heat flux is a surface which is perfectly insulated. 
 
c) Convection surface condition 
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This represents the existence of convection heating (or cooling) at the surface and is determined by 
applying an energy balance on the surface by equating the amount of heat transferred by conduction 
with that transferred by convection which results yields Equation 4.16. 
 
4.3.2 One Dimensional Steady state Conduction without Heat Generation 
The assumptions made for this kind of analysis are: 
• One dimensional 
• Steady state 
• No heat generation 
• Constant material properties 
 
Cartesian Coordinates 
This model deals with a one dimensional steady state system with no heat generation. It may describe 
the heat flow through a plane wall. Therefore the temperature is a function of x coordinates and heat is 
transferred in that direction.     
 
According to the pervious assumptions the general heat Equation 4.11 becomes  
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By integrating this equation twice assuming constant thermal conductivity of the wall to determine the 
general equation  

                                                     21)( CxCxT +=                                            (4.18) 
 
In order to obtain the constants found in Equation 4.18 we have to introduce the appropriate boundary 
condition. From the analysis done above, we can choose the first case (the surface is maintained at a 
fixed temperature Ts) 
 

            1,)0( sTT =         2,)( sTLT =                                  (4.21) 
 
Substituting these conditions in Equation 4.18 we obtain the two constants as follows 
At x =0 we get 
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21, CTs =  
Similarly at x =L  

212, CLCTs +=  

1,12, ss TLCT +=  
 
We can put the constant C1 in the following form 
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Substituting in the general solution of the heat equation  
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From Fourier’s law the heat flux crossing the wall is expressed by     

dx
dTkqx =′′  

 
Thus the amount of heat transferred through the wall of an area A is then obtained by 

dx
dTAkqx =  

 
From the previous derivation the temperature gradient dT/dx could be obtained as 
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Figure 4.10  Heat transfer through a plane wall 
 

Example 4.1: Calculate the maximum temperature the transistor base attains if it dissipates 7.5 W 
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through the bracket shown in the Figure below. All dimensions are in mm and the bracket is made of 
duralumin. 

 

 
 

Required: 
The maximum temperature attained by the transistor base. 

 
Solution: 
Given 
Dimension on the figure. 
q = 7.5 W 
tw = 50 º C 
This problem could be approximated to one dimensional steady state conduction. 
k = 164 W/m.K  
As the dimensions of the bracket is very small we can consider that the transfer is in one dimension 
through the sides of the bracket for the dimensions shown on the figure 
L = 15 +15 + 15 = 45 mm = 0.045 m 
w = 20 mm = 0.02 m 
δ = 5 mm = 0.005 m 
A = w x δ =   1 x 10 -4 m2  
From the above values the only unknown in equation 4.23 is the temperature of the transistor base. 
q = k A (tb - tw)/L 
tb = tw + (qL/kA) 
tb = 50 + (7.5 x 0.045/164 x 10-4) 
tb = 70.58 ºC 
 
Note: 
 
Usually the maximum allowable temperature is 100 ºC; therefore, the transistor temperature base is 
safe with a reasonable value which compensates the approximation done in the solution.  
 
Cylindrical Coordinates 
Considering the above assumptions, dT/dr is constant and heat flow only in one spatial coordinates 
the general form becomes  
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Where subscripts 1 and 2 refer to the inner and the outer surfaces respectively  
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Example 4.2: A hollow stainless (25 % Cr, 20 % Ni) steel cylinder 35 mm long has an inner diameter 
of 50 mm and outer diameter of 105 mm. a group of resistors that generate 10 W is to be mounted on 
the inside surface of the cylinder as shown in figure if the resistors temperature is not to exceed 100 
ºC find the maximum allowed temperature on the outer surface of the cylinder. 
  
Solution: 
From appendix the thermal conductivity of 25 % Cr, 20 % Ni stainless steel is 12.8 W/m.K from 
Equation 4.26; the only unknown is the temperature of the outside surface of the cylinder. 
 
 

 
 

kL
rrqTT io

io π2
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−=  

To= 100 – 10 × (ln (52.5/25)/ (2π × 12.8 × 0.035) 
To = 100 – 2.64 = 97.36 ºC 

 
 
Spherical Coordinates 
The same assumptions are applied to the spherical system giving the following solution  
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Where the subscripts i and o refer to the inside and the outside surfaces respectively. 
 
4.3.3 One Dimensional Steady state Conduction with Uniform Heat Generation 
The assumptions made for this kind of analysis are: 
• One dimensional 
• Steady state 
• Uniform heat generation 
• Constant material properties 
 
Cartesian Coordinates 
 
The heat equation becomes  

0
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Integrating and applying the boundary conditions described in figure we get 
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C1 = 0 and C2 = Ts + (q''' L2/2k) 
Then we get  
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The above equation differs for different wall construction and condition for an example if there is an 
outer cladding the temperature distribution through the wall will differ.  
 
q =q''' ×A × L = Ts – Tc/(Lc/kc Ac) 

 
 

Temperature distribution through the wall will be  
 
T = Tc + q''' L × Lc / kc + q''' / 2k( L2 – x2 ) 
 
Similarly we can apply these cases on the other coordinate systems (cylindrical and spherical). 
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The boundary condition of each case affects the constants introduced in the equation of the 
temperature distribution leading to a change in the final formula. 
 
Cylindrical Coordinates 
 
The heat equation becomes 
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For the following boundary conditions 
At  r = 0    dT/dr = 0    where C1 = 0 
At  r = ro    T = Ts          where C2 = Ts + q''' ro

2/ 4k 
 
We get the temperature distribution expression as follows 
T = Ts  +  q''' / 4k( ro

2 – r2 ) 
 
If the wall is subjected to a convective boundaries or it is cladded the same as in the plane wall the 
boundary conditions is to be applied and we are going to give the final form and the derivation is left 
to the student. 
 
For a convective boundaries:   T = T∞ + q''' / 4k ( ro

2 – r2 ) + q''' ro/ 2h 
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4.4 Extended Surfaces (Fins)  
 
As clear from the rate equations that enhancing heat transfer could be done by several methods it 
could be by increasing the temperature difference or by increasing the heat transfer coefficient and 
also by increasing the surface area A, in this section we are going to deal with the last one, and this 
idea is done by adding a secondary surface to the primary surface and it is called extended surfaces, 
due to temperature gradient through the fins the heat transferred is decreased per unit area.  
 
In electronic equipment cooling straight rectangular fins are mostly used and are done of good 
conducting material to attain the root temperature through the fins in order to increase the heat 
transferred. 
 
Fins used in electronics cooling are usually used of aluminum and quite thin about 1.3 to 1.5 mm 
thick.  Also in electronics cooling fins are usually considered of insulated tip. The heat transferred by 
fins are expressed in its effectiveness which is defined as  
ηf = qf  / qmax  
 
Where qf is the heat actually transferred by the fin and qmax is the maximum heat could be dissipated 
by the fin and this happens when the fin has a uniform temperature equals to the root temperature tr. 
ηf = (tanh m l )/(m l ) 
 
Where m = )(/)(2 LbkbLh + , l , L  and b are defined on the fin sketch (Figure 4.11a). 
Also the fin effectiveness could be considered as the fraction of the total surface area of the fin Af that 
is effective for the heat transfer by convection maintained at root temperature tr. 
ηf = Af, eff/Af,tot 
 
 q = h [( Atot – Af) + ηf  Af] (tr- ta) 
    = ηo Atot h (tr- ta) 
 
Where ηo = 1 – (Af/Atot) (1- ηf ) 
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If the fin is of convective tip a correction could be done as  
l c= l  + (b/2) 

 
 

 
 
 
 
 
 
 
 
 
 

 
 

4.4.1 Fin Geometries  
There are many types of plate-fin surfaces including plain fins, louvered fins, strip (or lanced offset) 
fins, wavy fins and pin fins. With 56 plate-fin surfaces tested, there is a wide range of fin geometries 
for which data is directly available. Figure 4.12 shows five common plate fin types and the critical fin 
dimensions. 
 
 

 
 

Figure 4.12 Fin descriptions 
 

 
 
4.4.2 Factors Affected on the Fin Selection 
With avionics power densities increasing, it becomes even more critical to design an 
optimum compact heat exchanger to remove the heat load most efficiently. There are many 

Figure 4.11a Straight rectangular fin dimensions 
 

Figure 4.11b Typical heat sink with straight 
rectangular fins for electronic device  
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factors to consider in the selection of fin style and geometry. All of the parameters will 
discusses and should help the thermal engineer understand and trade these factors so that the 
best design may be obtained. There will always be some give and take among all these 
factors, but knowing and evaluating these factors is critical in obtaining an optimum design. 
 
Using the Data 
The data in Kays & London is presented as Fanning friction factor and Colburn factor vs Reynold's 
number. The Fanning friction factor also known as the skin friction coefficient, is defined as 
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It is related to the more common D'Arcy friction factor by 
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The pressure drop, using the Fanning friction factor provided by Kays & London, is given by: 
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The Colburn factor, j is defined by: 
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The film coefficient, using the Colburn factor provided by Kays & London is given by: 
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Design Practices 
Now that you have all this good information on heat transfer and pressure drop for the 
different extended surfaces, you need to find the best way to use it. In the past, the thermal 
engineer would open up the Kays & London text book and look for a certain type of fin, such 
as pin, straight, lanced offset, or wavy, that worked for the combination of heat transfer, 
required pressure drop, and size constraints. This approach produces a design that works, but 
is hardly optimized for any of the considerations involved in designing the compact heat 
exchanger. A typical heat transfer plot of straight fins, from Kays and London, is shown in 
Figure 4.13. 
 
Figure 4.13 allows the thermal engineer to calculate the heat transfer and pressure drop by 
picking off the j-Colburn factor and friction factor at the proper Reynolds number for a 
certain configuration, but it is unknown whether the proper design was chosen from a size 
and efficiency standpoint. The first thing the thermal engineer needs to do is prioritize the 
design factors. Pressure drop, heat transfer, size, weight and cost must be placed in order of 
importance. Hence, figures of merit were developed in an effort to compare the different fin 
configurations. 
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Figure 4.13 Finstock data # 14.77 from Kays & London (0.4 mm high, 0.15mm thick, 37.5 fins/mm, ST 
[0.330" high, 0.006" thick, 14.77 fpi, ST]) 

 
If pressure drop and heat transfer are the most critical factors in the compact heat exchanger 
design then a good figure of merit is heat transfer per unit of pressure drop, or in basic terms: 
j-Colburn factor divided by f-friction factor. Figure 4.14 shows a comparison of the different 
types of extended surfaces using heat transfer/pressure drop as the figure of merit. 
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Figure 4.14 Heat transfer/pressure drop 
 

 
Figure 4.15 Size figure of merit 

 
 
As can be seen from Figure 4.14, the efficiency of straight fins used in a heat exchanger is 
better than the other fin configurations over almost the whole range of typical Reynolds 
numbers. At a Reynolds number of 4000 the straight fin produces a three times better ratio of 
heat transfer per unit of pressure drop than the pin fin configuration. This figure of merit is 
based strictly on getting the best heat transfer for a given pressure drop. 
 
Size is generally an important factor in the heat exchanger design. If size is the overall 
driving design factor then a good figure of merit is heat transfer per unit height. Figure 4.15 
provides a comparison if size or height is the critical factor in the heat exchanger design. 
Figure 4.15  shows that, from a purely size standpoint, pin fins offer the smallest design for 
the best heat transfer while straight fins are the most inefficient from a heat transfer and 
smallest size constraint. 
 
Weight is almost always an important factor in avionics cooling and designing a heat exchanger for an 
aircraft. A good figure of merit for weight is based on the heat transfer per weight unit. Figure 4.16 
shows a comparison of fin configurations when weight is the critical factor in the design. 
 
The last parameter that must be traded is cost, which is always an important factor in the 
design of a compact heat exchanger. It is also one of the more subjective areas. In general, 
pin fins, which are incorporated directly into the casting of the heat exchanger, are the least 
expensive. The other fin configurations, such as wavy, straight, offset louvered and cost 
about the same with some minor differences in set up costs. 
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Figure 4.16 Weight figure of merit 

 
 
A relative comparison of the fin configurations, based on all the factors discussed is critical 
in determining the proper design. All of the parameters are presented as individual design 
points, while the charts show the relative comparison for one parameter such as size, the 
assumption is made that pressure drop is unlimited as well as weight or cost. All of these 
parameters must be considered to obtain the proper design. The table above summarizes or 
ranks each factor so that the thermal engineer can get a relative view of all the parameters 
together. The rankings in Table 4.1 are from 1 to 5 with a ranking 1 being the most desirable 
and a ranking of 5 being the least desirable. 
 

Table 4.1 Comparison of all parameters 
Fin Configuration P Size Weight Cost Average 

Straight 1 5 4 2 3 
Offset 4 3 3 4 3.5 
Pin 5 1 5 1 3 
Wavy 3 4 2 3 3 
Louver 2 2 1 5 2.5 
 
 
With all of the parameters weighted equally the louvered fin configuration produces the best 
design for a compact heat exchanger. Another important factor is that even though the cost of 
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the louvered fin is highest its cost is only slightly higher than the wavy, offset and straight 
fins. By contrast, the pin fin structure is an all or nothing configuration, with the highest 
figure of merits for cost and size, while performing extremely poorly in pressure drop and 
weight. So if cost and size are the number one priority without concern for pressure drop then 
the pin fins performs very well. Straight fins are also your best choice if pressure drop is the 
limiting factor in the design, which is usually a driving factor in avionics heat exchanger 
design. With all the parameters considered, all five fin configurations came out surprisingly 
equal, so a weighted average would be most appropriate in finding the proper design for a 
given set of prioritized factors. 
 
  

 
 


