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5.  Multi-Dimensional  Conduction 
 
 

In this lecture, we will deal with heat conduction problem significant in more than one-dimension. 
This approach should be used as the applications imply. First, several alternatives are developed to 
deal with two-dimensional, steady state conduction. Then as we reach the numerical approach, we can 
extend its use for a three-dimensional problem. 
 
 
5.1 Two-Dimensional and Steady-State Conduction 
 
Under the assumptions of two dimensional steady state conduction the general heat equation is 
reduced to  
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                         (5.1) 

 
Now we have two goals for solving the above equation, the first is to determine the temperature 
distribution across the flied which became a function in the two coordinates x and y T(x, y), then to 
determine the heat fluxes qx

” and qy
” in the two direction x and y respectively. 

 
There are many techniques for solving the Equation 5.1 including: analytical, graphical and numerical 
solution (finite element and finite difference approaches). 
 
The analytical solution is much more difficult than that of the one dimensional steady state conduction 
since the equations are partial differential equations, the mathematical solution is very difficult and is 
limited to a set of simple geometries, on the other hand the exact solution gives the dependent variable 
T as a continuous function in the independents (x, y) and the solution could be determined at any 
point of interest in the field of study. 
 
On the other hand the graphical and the numerical solution gives an approximate solution at discrete 
points in the medium, as the graphical and numerical can solve complex geometries, they are more 
widely used for the multidimensional conduction problems. 
 
5.1.1 The Method for Separation of Variables  
Solving Equation 5.1 for a rectangular plate as shown in Figure 5.1, with three boundaries maintained 
at T1, while the fourth side is maintained at T2, where T2 ≠ T1, the solution of this problem should give 
the temperature distribution T(x, y) at any point in the solution domain. For solution purpose, the 
following transformation is done. 
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And thus the heat equation yields 
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Figure5.1 Geometric configuration for the method of separation of variables 

 
Since the equation is second order in both x and y, two boundary equations are required for each 
coordinate which are 
 

( ) ( )
( ) ( )
0, 0 and ,0 0

, 0 and , 1

y x

L y x W

θ θ

θ θ

= =

= =
                                  (5.4) 

 
The separation of variables technique is applied by assuming that the required function is the product 
of the two functions X (x) and Y (y) 
 

( ) ( ) ( ),x y X x Y yθ = ⋅                                   (5.5) 
 
Substituting in Equation 5.3 and dividing by XY 

2 2

2 2

1 1d X d Y
X dx Y dy

− =                                    (5.6) 

 
It is evident that Equation 5.6 is separable as the left-hand-side depends only on x, and the right-hand-
side depends only on y. Therefore, the equality can only apply if both sides are equal to the same 
constant, λ2, called the separation constant. Using this constant, Equation 5.6 can yield the following 
equations 
 

2
2
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λ+ =                                    (5.7) 

2
2
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Then the partial differential equation is converted to two second order ordinary differential equations. 
The value of λ2 must not be negative nor zero in order that the solution satisfies the prescribed 
boundary equation. 
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The solutions equation of the above ODE gives 

1 2cos sinX C x C xλ λ= +                                  (5.9) 

3 4
y yY C e C eλ λ− += +                                   (5.10) 

 
The general solution of the heat equation is 

( )( )1 2 3 4cos sin y yC x C x C e C eλ λθ λ λ − += + +           (5.11) 

 
Then applying the boundary condition that θ (0, y) = 0, we get that C1 = 0, 
 
Then the condition that θ (x, 0) = 0, we get  

2 3 4sin ( ) 0C x C Cλ + =                    (5.12) 
 
The above equation is satisfied by either C3 = - C4 or C2 = 0, but if we consider the solution that C2 = 0 
this will eliminate the solution dependency on x coordinate, which is a refused solution, thus the first 
solution is chosen C3 = - C4, applying the condition that θ (L, y) = 0, we get:  

2 4 sin ( ) 0y yC C L e eλ λλ −− =                   (5.13) 
 
The only acceptable solution is that sin (λ L) = 0, this is satisfied for the values of 

where 1, 2,3,...n n
L
πλ = =  

( )/ /
2 4 sin n y L n y Ln xC C e e

L
π ππθ −∴ = −                   (5.14) 

 
Rearranging  

( , ) sin sinhn
n x n yx y C

L L
π πθ =                    (5.15) 

Where Cn is a combined constant Equation 5.16 has an infinite number of solutions depending on n, 
however it is a linear problem. Thus a more general solution may be obtained by superposing all the 
solutions as 
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Now in order to determine Cn the remaining boundary condition should be applied 

1
( , ) 1 sin sinhn
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An analogous infinite series expansion is used in order to evaluate the value of Cn resulting that 

12[( 1) 1]
sinh( / )

n

nC
n n W Lπ π

+− +
=  

 
Substituting in Equation 5.16 we get 
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Then we obtain the solution of the rectangular shape in terms of θ as represented in the Figure 5.2 in 
the form of Isotherms for the schematic of the rectangular plate.  
 

 
Figure 5.2 Isotherms for two-dimensional conduction in a rectangular plate 

 
 
5.1.2 The Graphical Method 
The graphical approach is applied for two dimensional conduction problems with adiabatic and 
isothermal boundaries, it has been used as a first estimate for the temperature distribution and to 
develop a guess for the physical nature of the temperature field and heat flux in the medium. 
 
The idea of the graphical solution comes from the fact that the constant temperature lines must be 
perpendicular on the direction of heat flow, the objective in this method is to form a symmetrical 
network of isotherms and heat flow lines (adiabatic) which is called plot flux. 
 
Consider a square, two-dimensional channel whose inner and outer surfaces are maintained at T1 and 
T2 respectively as shown in Figure 5.3(a). The plot flux and isothermal lines are shown in Figure 
5.3(b). 
 
The procedure for constructing the flux plot is enumerated as follows: 
1. The first step in any flux plot should be to identify all relevant lines of symmetry. Such lines are 
determined by thermal, as well as geometrical, conditions. For the square channel of Figure 5.3(a), 
such lines include the designated vertical, horizontal, and diagonal lines. For this system it is therefore 
possible to consider only one-eighth of the configuration, as shown in Figure 5.3(b). 
 
2. Lines of symmetry are adiabatic in the sense that there can be no heat transfer in a direction 
perpendicular to the lines. They are therefore heat flow lines and should be treated as such. Since 
there is no heat flow in a direction perpendicular to a heat flow line, such a line can be termed 
adiabatic. 
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3. After all known lines of constant temperature associated with the system boundaries have been 
identified, an attempt should be made to sketch lines of constant temperature within the system. Note 
that isotherms should always be perpendicular to adiabatic lines. 
 
4. The heat flow lines should then be drawn with an eye toward creating a network of curvilinear 
squares. This is done by having the heat flow lines and isotherms intersect at right angles and by 
requiring that all sides of each square be of approximately the same length. It is often impossible 
satisfy this second requirement exactly, and it is more realistic to strive for equivalence between the 
sums of the opposite sides of each square. Assigning the x coordinate to the direction of the flow and 
the y coordinate to the direction normal to this flow, the requirement may be expressed as: 

 

2 2
ab cd ac bdx y+ +

∆ ≡ ≈ ∆ ≡                        (5.19) 
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Figure 5.3 Graphical solution for Two-dimensional conduction in a square channel 

 
The rate at which energy is conducted through a heat flow path, which is the region between adjoining 
adiabatic lines, is designated as qi. If the flux plot is properly constructed, the value of qi will be the same 
for all heat flow paths and the total heat transfer rate may be expressed as: 

1

M

i
i

q q
=

=∑                              (5.20) 

Where M is the number of heat flow paths associated with the plot. qi may be expressed as: 

( )j j
i i

T T
q kA k y l

x x
∆ ∆

≈ ≈ ∆ ⋅
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                         (5.21) 

 
Where ∆Tj is the temperature difference between successive isotherms, A, is the conduction heat 
transfer area for the heat flow path, and l is the length of the channel normal to the page. However, if 
the flux plot is properly constructed, the temperature increment is the same for all adjoining 
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isotherms, and the overall temperature difference between boundaries, T1 – 2 may be expressed as 
 

1 2
1

N

j j
j

T T N T−
=

∆ = ∆ = ∆∑                          (5.22) 

 
Where N is the total number of temperature increments. Combining Equations 5.20 to 5.22 and 
recognizing that ∆x ≈ ∆y for curvilinear squares, we obtain 

1 2
Mlq k T
n −≈ ∆                       (5.23) 

 
The manner in which a flux plot may be used to obtain the heat transfer rate for a two-dimensional 
system is evident from Equation 5.23. The ratio of the number of heat flow paths to the number of 
temperature increments (the value of M/N) may be obtained from the plot. Recall that specification of 
N is based on step 3 of the foregoing procedure, and the value, which is an integer, may be made large 
or small depending on the desired accuracy. The value of M is then a consequence of following step 
4. Note that M is not necessarily an integer, since a fractional lane may be needed to arrive at a 
satisfactory network of curvilinear squares. For the network of Figure 5.3(b), N = 7 and M = 6. Of 
course, as the network, or mesh, of curvilinear squares is made finer. N and 1W increase and the 
estimate of M/N becomes more accurate. 
 
The above procedure is very time consuming, and can be done only for simple geometries. For this 
reasons, a simplification has been made by tabulating the shape factors for various two-dimensional 
problems in order to enable easier analysis of 2-D conductions. 
 
Equation 5.23 may be used to define the shape factor, S, of a two-dimensional system as being the 
ratio (Ml / N). Hence, the heat transfer rate may be expressed as 

1 2q Sk T −= ∆                        (5.24) 
 
From Equation 5.24, it also follows that a two-dimensional conduction resistance may he expressed as 

,2  
1

t D condR
Sk− =                       (5.25) 

 
Shape factors for numerous two-dimensional systems and results are summarized in Table 5.1 for 
some common configurations. For each case, two-dimensional conduction is supposed to occur 
between boundaries that are maintained at uniform temperatures.  
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Table 5.1 Conduction shape factors for selected two-dimensional systems, q=S k (T1–T2) 
System Schematic Restrictions Shape Factor 
Case 1. 
Isothermal sphere buried in a 
semi-infinite medium 

 

z > D/2 

 

Case 2. 
Horizontal isothermal cylinder 
of length L buried in a 
semi-infinite medium 

 

L>>D 
 
L>>D  
z > 3D/2 
 

 

 

Case 3. 
Vertical cylinder in a 
semi-infinite medium 

 

L>>D 
 

 

Case 4.  
Conduction between two 
cylinders of length L in infinite 
medium 

L >> D1,D2 
L >> w  
 

Case 5.  
Horizontal circular cylinder of 
length L midway between 
parallel planes of equal length 
and infinite width 

z >> D/2 
L >> z  
 

 

Case 6. 
Circular cylinder of length L 
centred in a square solid of 
equal length 

 

 

 

Case 7. 
Eccentric circular cylinder of 
length L in a cylinder of equal 
length 

 

D > d 
L >> D 

Case 8. Conduction through the 
edge of adjoining walls 

 

D > L/5 0.54 D 

Case 9. 
Conduction through corner of 
three walls with a temperature 
difference ∆T1 – 2 across the 
walls 

L << length 
and width of 
wall 

0.15 L 

Case 10. 
Disk of diameter D and T1 on a 
semi-infinite medium of 
thermal conductivity k and T2 

 

None 2 D 
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Example 5.1: 
A hole of diameter D = 0.25 m is drilled through the centre of a solid block of square cross section 
with w = 1 m on a side. The hole is drilled along the length l = 2 m of the block, which has a thermal 
conductivity of k = 150 W/m K. A warm fluid passing through the hole maintains an inner surface 
temperature of T1 75 °C, while the outer surface of the block is kept at T2 = 25 °C. 
1. Using the flux plot method, determine the shape factor for the system. 
2. What is the rate of heat transfer through the block? 
 
Solution: 

 
 
Assumptions: 
1. Steady-state Conditions. 
2. Two-dimensional conduction. 
3. Constant properties. 
4. Ends of block are well insulated. 
 
Analysis: 
1. The flux plot may be simplified by identifying lines of symmetry and reducing the system to the 
one-eighth section shown in the schematic. Using a fairly coarse grid involving N = 6 temperature 
increments, the flux plot was generated. The resulting network of curvilinear squares is as follows. 
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With the number of heat flow lanes for the section corresponding to 
M = 3, it follows that the shape factor for the entire block is 
S = 8× (M × l / N) = 8 × (3 × 2 / 6) = 8 m 
 
Where the factor of 8 results from the number of symmetrical sections.  
 
The accuracy of this result may be determined by referring to Table 5.1, where, for the prescribed 
system, it follows that 
 

2 2 2 8.59 m
ln(1.08 / ) ln(1.08 1/ 0.25)

LS
w D

π π ×
= = =

×
 

 
Hence the result of the flux plot under predicts the shape factor by approximately 7%. Note that, 
although the requirement l >> w is not satisfied. 
 
2. Using S = 8.59 m with Equation 5.24, the heat rate is 

q = S k (T1 – T2) 
q = 8.59 m × 150 W/m K (75 – 25) °C  = 64.4 kW. 

 
 
5.1.3 The Numerical Method 
An alternative to the analytical and the graphical method is the numerical method, the numerical 
method involve different techniques such as finite difference, finite element and boundary –element 
method. 
 
As stated in section 5.1.1 that the analytical solution gives the dependent variable T as a continuous 
function in the independent variables x and y. in contrast to the analytical solution the numerical 
solution converts the field or the system to discrete points at which the temperature is obtained. The 
domain is divided to small regions, referring to each region with a point at its centre as a reference 
point this point is termed nodal point or node, the network formed from these points is called nodal 
network, grid or mesh. Figure 5.4 presents a discritised domain along with the proper nomenclature. 
 
The space or the difference between nodes is ∆x in x direction and ∆y in y direction, These nodes are 
numbered in both x and y direction and vary from 1 to m and n respectively and then conservation 
equation is applied to each point. 
 
Using Taylor expansion the first and second derivatives are approximated to algebraic equations then 
we get number of simultaneous equations equal to number of nodes then this system of linear 
equations is solved either by a direct or indirect method  to obtain the temperature value at each point.  
 
Here are the algebraic equations expressing the derivatives in the conservation equation that is applied 
to each point. 
 

 
( )

2
1, , 1,

22

2m n m n m nT T TT
x x
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                (5.27) 

 
Similarly the derivative in the y direction is expressed as 
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2
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∂ ∆
  (5.28) 
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Figure 5.4 Discritised domains for a two-dimensional conduction problem 

 
Substituting from Equations 5.27 and 5.28 into Equation 5.1 gives the discretised heat equation as 

, 1 , 1 1, 1, ,4 0m n m n m n m n m nT T T T T+ − + −+ + + − =                         (5.29) 
 
Now Equation 5.29 can be applied at each grid point so that a set of n × m simultaneous equations is 
formed. This set of equations can be solved either directly by matrix inversion method or indirectly by 
iterative procedures. Special care must be taken for boundary nodes, for this energy conservation 
should be applied. 
 
 
5.2 Three-Dimensional and Steady-State Conduction 
 
The problem of three-dimensional, steady-state conduction is a very tricky one. The most widely 
approach for such problems is the numerical approach. For this a discretised equation is developed 
and similar solution procedure as described in section 5.1.3 is performed to get temperature values at 
nodal points inside the domain. 
 
 


